NISTIR 6890

Fire Resistance Determination and Performance Prediction Research Needs Workshop: Proceedings

William Grosshandler Editor

NISTIR 6890

Fire Resistance Determination and Performance Prediction Research Needs Workshop: Proceedings

William Grosshandler Editor Building and Fire Research Laboratory

September 2002

U.S. Department of Commerce Donald L. Evans, Secretary

Technology Administration *Phillip J. Bond, Under Secretary of Commerce for Technology*

National Institute of Standards and Technology Arden L. Bement, Jr., Director

O. Fire Resistance and Performance Prediction: Structural Analysis Issues and Research
Needs

James Ricles, Department of Civil and Environmental Engineering
Lehigh University, Bethlehem PA
(see file App III O.pdf)

Behavior of Structures in Extreme Events

James Ricles

Department of Civil and Environmental Engineering Lehigh University, Bethlehem, PA

NIST Workshop on

Fire Resistance Determination and Performance Prediction

February 19-20, 2002

Presentation

- Response of Structures to Severe Earthquakes
- Elevated Temperature Effects on Structural Steel Systems
- Research Needs for Fire Resistance Determination and Performance Prediction

Response of Structures to Severe Earthquakes

Damage to Olive View Hospital from 1971 San Fernando EQ

Soft-story Mechanism

Column Failure

Source: Chopra, 2001

Structural Response Prediction to Earthquakes

Analysis

- Material modeling (non-linearities)
 - Cyclic plasticity
 - Cyclic degradation of material stiffness and strength
 - Fracture
- Geometric non-linearities
 - Local buckling
 - Global instabilities (P-Δ effects)

Experimental testing

- Database on real performance
- Proof of concept
- Calibration of analytical models

Earthquake Structural Performance Evaluation Experimental Testing

Shake Table Testing

University of California, Berkeley Shake Table (Source: Chopra, 2001)

- Real Time
- Limited Specimen Size

Earthquake Structural Performance Evaluation Experimental Testing

Reaction Wall Testing (Pseudo-Static or Pseudo Dynamic)

Lehigh University Multi-directional Reaction Wall Testing Facility

- Not Real Time
- Full-Scale Specimens

Earthquake Structural Performance Evaluation Experimental Testing

Component Tests
(Pseudo-Static or Pseudo Dynamic)

Lehigh University Multi-directional Reaction Wall Testing Facility

- Not Real Time
- Boundary Condition Effects
- Full-Scale Specimens

Earthquake Structural Performance Evaluation Analysis

Finite Element Analysis of Welded Connection

Global model

- Material and geometric non-linearities
- Emphasis on local joint region
- Cyclic load analysis

Equivalent Plastic Strain in Weld Access Hole Region

Earthquake Structural Performance Evaluation *Analysis*

Finite Element Analysis of Welded Connection

Cyclic Equivalent Plastic Strain

Earthquake Structural Performance Evaluation Analysis

Finite Element Analysis of Welded Connection

Deformed Shape with Local Buckling

Lateral Load – Displacement Hysteretic Response

Earthquake Structural Performance Evaluation Analysis

Nonlinear Structural System Time History Analysis

Earthquake Structural Performance Evaluation *Analysis*

Nonlinear Structural System Time History Analysis

Structural Steel Behavior at Elevated Temperature Steel Production

Phase Diagram for Structural Steel

(Source: Tide, 2000)

Structural Steel Behavior at Elevated Temperature Mechanical Properties

(Source: Tide, 2000

Structural Steel Behavior at Elevated Temperature Structural Behavior

- Temperature Rise and Distribution
 - Change in Material Properties
 - Thermal Expansion
- Member Restraint
- Large Displacements
- Shifting Load

Cardington Lab Fire Test, U.K. (Source: Gewain and Troup, 2001)

Structural Steel Behavior at Elevated Temperature Structural Behavior

Beam Twisting

Beam Local Buckling

Column Local Buckling

Connection Failure

(Source: Tide, 2000)

Post-Fire Structural Integrity Evaluation

Dexter and Lu, 2001

One Meridian Plaza (Phil, PA)

- 38-Story Steel Frame Bldg
- 1991 Fire, 18-hr Duration
- 9 Fire Floors

(Source: Dexter and Lu, 2001)

Post-Fire Structural Integrity Evaluation

Dexter and Lu, 2001

- Inelastic Deformations During Fire
- Changes in Beam Length Locke in Forces in Members

(Source: Dexter and Lu, 2001)

Building Position After Fire

Post-Fire Structural Integrity Evaluation

Dexter and Lu, 2001

Non-linear Static Pushover Analysis

Research Issues and Needs

Testing -

- Structural component vs. structural system tests (effects of structural redundancy, restraint, connections, non-load bearing elements)
- Thermal input
- Measuring structural response (thermal effect on sensors)
- Test protocol
- Adequate facility for conducting fire testing

Analysis -

- Calibration of models with test data
- Structural component vs. structural system modeling (effects of structural redundancy, restraint, connections, non-load bearing elements)
- Thermal input
- Time scale
- Non-linearities:
 - Change in material properties due to thermal input and loading
 - Geometric non-linearities (large displacements; local buckling; load shifting)
 - Connection modeling (stiffness and strength deterioration; fracture)

Summary and Conclusions

- (1) Success has been achieved in predicting the performance of structures to extreme earthquakes
 - Sophisticated analytical models
 - Experimental testing
- (2) Predicting the fire resistance and performance of a structure has several challenges. The complexities involved require sophisticated analytical models, and experimental testing to calibrate these models.